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INTRODUCTION 

Percolation is a second-order phase transition. The study 
of percolation started with the work of the chemist P. 
Flory in his study on gelation in polymers (Flory, 1941). 
The percolation theory deals with the clusters formed 
when each site of an infinite lattice is randomly occupied 
with probability 𝑝𝑝 (Staufer & Aharony, 1994). A cluster 
(groups of neighbouring occupied sites) that connects two 
opposite lattice sides is called a percolation cluster, and it 
will appear when the probability 𝑝𝑝 reaches a critical value 
𝑝𝑝𝑐𝑐 , which is called the percolation threshold (Hao, 2005). 
Finding the percolation threshold for a given system is 
one of the fundamental tasks. Percolation is used to 
explain, for example, the gelation of polymeric materials 
(Stauffer, Coniglio and Adam, 1982). the growth of rough 
surfaces and disordered interfaces via atomic 
chemisorption (Meakin, 1993), the recovery of oil from 
porous media (King, Buldyrev, Dokholyan, et al., 2002),  

ion transport in glasses and composites (Roman, Bunde, 
and Dieterich, 1986). 
In standard percolation theory, the constituent elements of 
the clusters are usually randomly distributed, but 
correlations cannot always be neglected. Several 
correlated percolation models have been developed and 
extensively studied, such as bootstrap percolation (Adler, 
1991), directed percolation (Broadbent & Hammersley, 
1957), and spiral percolation (Santrs & Bose, 1992).  
In the last two decades, it has become possible to 
synthesize many classes of nanoscale building blocks 
with controlled structure, size, and shape for applications 
in chemical engineering, medicine, electronics, etc. 
Seeded growth has emerged as a compelling method to 
create a wide variety of novel metal nanostructures (Gole 
& Murphy, 2004); Habas, Lee, Radmilovic, et al., 2007) 
and high-quality nanocrystal samples that can serve as 
preferential platforms for deposition of additional 
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Abstract: The physical and chemical properties of the nanocrystals are highly shape dependent, and 

shape control has become very important. The seeded growth method enables seeds to grow in a 

predetermined way. We have already proposed such a model that can reproduce the granular growth 

on a triangular lattice and for different growth shapes. In this paper, however, we have introduced a 

limitation on seed growth up to a certain length. This method can be used when the growth of all seeds 

have to be limited to the same length, or for a mixture with the different growth limits. The main goal 

is to investigate how the growing limits affect the values of the percolation threshold and jamming 

density, and whether large objects significantly affect the percolation threshold. We used growing 

needle-shaped objects (k-mers) made by a self-avoiding random walk filling the nodes of the triangular 

lattice. Objects can grow until they reach the growth limit k' defined as the maximum number of lattice 

nodes belonging to one object. For 𝑘𝑘′ ≥ 10, percolation is reached for all investigated seed densities. 

We obtained that the values of the percolation threshold and jamming density are identical for 𝑘𝑘′ ≥

10. Above these values, the percolation threshold and jamming remain unchanged, regardless of the

growth limit. Our results also show that when significant growth is allowed, long objects are very rare 

and do not influence the results. 

*Corresponding author:
Dijana Dujak 
E-mail: ddujak@etf.unsa.ba 
Phone: 00-387-33-250-700 

https://doi.org/10.35666/2232-7266.2022.59.05
mailto:ddujak@etf.unsa.ba


38 Dujak et al. 

material (Xia, Gilroy, Peng, et al., 2017). Dujak, Karač, 
Budinski-Petković, et al., (2022), proposed a model that 
can reproduce granular growth on a triangular lattice, 
from nucleation to percolation, and for different growing 
shapes. The object's growth was not limited. In this paper, 
we investigate how the growth limit of the needle-like 
objects (k-mers) affects the values of the percolation 
threshold and the jamming density.  

EXPERIMENTAL 

Definition of the model and the simulation method 
The Monte Carlo simulations are performed on a two-
dimensional triangular lattice of different sizes 𝐿𝐿. Periodic 
boundary conditions are used. Coverage of the lattice 𝜃𝜃(𝑡𝑡) 
is the fraction of the covered lattice sites by the growing 
objects at time 𝑡𝑡. At large times the coverage θ(t) 
approaches the jammed-state value called jamming 
coverage 𝜃𝜃𝐽𝐽. In that state, none of the objects can grow to 
unocupied spaces. The percolation threshold 𝜃𝜃𝑝𝑝∗ is the 
coverage of the lattice when a percolating cluster appears. 
The lattice is filled with objects using random sequential 
adsorption model (RSA) (Evans, 1993), (Privman, 2000) 
(Cadilhe, Araújo, and Privman, 2007). The growing 
objects on the lattice are modeled by self-awoiding walks 
(Budinski-Petković, Lončarević, Dujak, et al., 2017)  

Definition of the model 
The point-like seeds are deposited on the sites of the 
planar triangular lattice at a given density 𝜌𝜌. Density of 
seeds is calculated as a fraction of sites of the lattice that 
are occupied by seeds. Each seed can grow only in one 
direction, creating a linear object called k-mer. K-mers 
are line-segments of lenght 𝑙𝑙 = 𝑘𝑘 − 1 where 𝑘𝑘 denotes the 
number of the lattice sites that belongs to that particular 
k-mer. The formation of k-mers with corresponding 
percolation thresholds and jamming coverages is shown 
in Table I.  

Table I: Formation of k-mers of different lengths 𝑙𝑙 = 𝑘𝑘 − 1 
(up to 𝑙𝑙 = 3) with corresponding percolation thresholds 𝜃𝜃𝑝𝑝∗ for 
infinitely large lattice and jamming coverages 𝜃𝜃𝐽𝐽. The numbers 

in parentheses are the numerical values of the standard 
uncertainty of 𝜃𝜃𝑝𝑝∗ and 𝜃𝜃𝐽𝐽 referred to the last digits of the quoted 

value. 

k-mer k l 𝜃𝜃𝑝𝑝∗ 𝜃𝜃𝐽𝐽 
1 0 0.5000(1) 1 
2 1 0.4867(1) 0.9141(3) 
3 2 0.4628(3) 0.8362(4) 
4 3 0.4432(2) 0.7891(6) 

As the k-mers grow, they come in contact (i.e. there is a 
lattice site between them) and they are merged into a 
single cluster. There are numerous clusters that grow 
simultaneously. If two clusters come into contact (i.e. 
occupied perimeter sites are separated by a single lattice 

spacing), they are amalgamated into a single cluster. 
Percolation is reached when a cluster connects opposite 
edges of the lattice and then the percolation threshold 𝜃𝜃𝑝𝑝∗ 
is reached. To determine the percolation threshold 𝜃𝜃𝑝𝑝∗, the 
tree-based union/find algorithm is used (Newman & Zi, 
2001). The jamming coverage 𝜃𝜃𝐽𝐽 is reached when no more 
growing objects can grow in growing direction on the 
lattice (Lončarević, Budinski-Petković and Vrhovac, 
2007; Budinski-Petković, Vrhovac, and Lončarević, 
2008). 

Simulation method 
The RSA model of seeds in two dimensions is used to 
prepare the initial state of the system. Monomers (k-mers 
with 𝑘𝑘 = 1) that represent the point-like seeds are 
deposited onto lattice using the Monte Carlo procedure, 
up to the chosen density 𝜌𝜌. Then deposition is switched 
off and a random growing process is initiated.  
At each Monte Carlo step, a lattice site occupied by seed 
is selected at random. An adjacent site that is not occupied 
by another seed or k-mer is selected randomly and the 
seed grows into dimer (k-mer with 𝑘𝑘 = 2). A double 
occupation at any site is not allowed. Only a single step 
k-mer growth is allowed and only the last point of the 
corresponding k-mer is active for further growth. The k-
mers can grow only in direction of the first step. If the 
corresponding adjacent site is not empty, the k-mer 
elongation attempt is not possible and the object remains 
unchanged. The growth of the k-mers is limited up to 𝑘𝑘′ 
i.e. they can grow until they reach the lenght 𝑙𝑙 = 𝑘𝑘′ − 1 
defined at the beginig of the simulation.  

RESULTS AND DISCUSSION 

The percolation threshold and jamming coverage were 
investigated for various seed densities 0.15 ≤ 𝜌𝜌 ≤ 0.49 
on the lattice size ranging from 𝐿𝐿 = 100 to 𝐿𝐿 = 3200, 
and for various growth limits 2 ≤ 𝑘𝑘′ ≤ 160. The data are 
averaged over 500 independent runs for each lattice size. 
The finite-size scaling theory of the percolation behavior 
on two-dimensional lattices (Staufer & Aharony, 1994) is 
used to obtain the percolation threshold for un infinitely 
large lattice 𝜃𝜃𝑝𝑝∗. According to this theory, the efective 
percolation threshold 𝜃𝜃𝑝𝑝 (the mean value of threshold 
measured for the finite lattice) approaches the asymptotic 
value 𝜃𝜃𝑝𝑝 → 𝜃𝜃𝑝𝑝∗ for 𝐿𝐿 → ∞ via the power law: 

𝜃𝜃𝑝𝑝 − 𝜃𝜃𝑝𝑝∗ ∝ 𝐿𝐿−1/𝜈𝜈  (1) 

where the constant 𝜈𝜈 = 4/3 is the critical exponent 
(Staufer & Aharony, 1994). Equation (1) allows 
extrapolation of the threshold for an infinite lattice. Finite-
size scaling of the lattice threshold 𝜃𝜃𝑝𝑝 against 𝐿𝐿−3/4 is 
shown in Figure 1.a and Figure 1.b for various initial seed 
densities and for 𝑘𝑘′ = 4 and 𝑘𝑘′ = 160 as representatives. 
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 (a)  (b) 

Figure 1: Finite-size scaling of the effective percolation threshold 𝜃𝜃𝑝𝑝 against 𝐿𝐿−1/𝜈𝜈 with 𝜈𝜈 = 4/3 for growing k-mers up to 
a) 𝑘𝑘′ = 4, b) 𝑘𝑘′ = 160

Figure 2: Dependence of the percolation threshold 𝜃𝜃𝑝𝑝∗ on the 
initial seed density 𝜌𝜌.  The inset shows an enlarged part of this 

graph that displays a non-monotonic behaviour for 𝑘𝑘′ =
2, 3, 4, 5, 10 

The dependence of the percolation threshold 𝜃𝜃𝑝𝑝∗ on the 
initial seed density 𝜌𝜌 is shown in Figure 2. It can be seen 
that the percolation is not reached for all seed densities 
depending on the growth limits 𝑘𝑘′. If 𝑘𝑘′ = 2, the 
percolation is reached for 𝜌𝜌 ≥ 0.3, if 𝑘𝑘′ = 3 the 
percolation is reached for 𝜌𝜌 ≥ 0.2, and for 𝑘𝑘′ = 4 and 5 
the percolation appears at 𝜌𝜌 ≥ 0.15. For 𝑘𝑘′ ≥ 10 the 
percolation was achieved for all investigated densities. 
However, for all 𝑘𝑘′ the percolation threshold increases 
monotonically for low values of seed density, reaches a 
maximum for seed densities in the interval 0.4 < 𝜌𝜌 <
0.45, and then for higher values of seed density, 𝜃𝜃𝑝𝑝∗ 
decreases for all 𝑘𝑘′ towards the same value 𝜃𝜃𝑝𝑝∗ = 0.5. The 
results for 𝑘𝑘′ ≤ 5 differ slightly from each other showing 
a little bit higher values of 𝜃𝜃𝑝𝑝∗ for the same seed densities. 
For 𝑘𝑘′ ≥ 10 the results overlap.  
At low values of initial seed densities, k-mers have 
enough space to grow, but if their growth is limited to 
small lengths, the surface remains very porous, and a 
percolation cluster can not be formed. On the other hand, 
if a percolating cluster is reached, the percolation 

threshold 𝜃𝜃𝑝𝑝∗ will have higher values for lower values of 
the growth limits 𝑘𝑘′.  

Figure 3: Largest growing objects in the jamming coverages 
vs. the initial seed density 𝜌𝜌 on the lattice sizes 𝐿𝐿 = 3200. 

The maximum reached lenght limits depending on the 
seed density, for different growth limits is shown in 
Figure 3. For 𝑘𝑘′ < 20 the set growth limit is reached for 
all seed densities. For 𝑘𝑘′ ≥ 20 there are critical maximum 
lengths of k-mer growth regardless of growth limit 𝑘𝑘′, 
depending only on the initial density of seeds. When 
significant growth is allowed, long objects are very rare 
and do not influence results.  
Unlike the results shown in Figure 3, where the mean 
value of the maximum length reached at least once in all 
500 independent simulations is shown, Figure 4 shows the 
mean value of the maximum length 𝑙𝑙𝑚̅𝑚𝑚𝑚𝑚𝑚 of the k-mers in 
all 500 independent simulations. It is obvious that in the 
cases where the k-mers have not reached the growth limit, 
the mean value of the maximum length is identical for all 
growth limits. 
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Figure 4: The mean value of the maximum length 𝑙𝑙𝑚̅𝑚𝑚𝑚𝑚𝑚 for 
different seed densities 𝜌𝜌 and growth limits 𝑘𝑘′. For 𝑘𝑘′ < 10, 

𝑙𝑙𝑚̅𝑚𝑚𝑚𝑚𝑚 is always equal to  𝑘𝑘′ − 1. Size of the lattice is 𝐿𝐿 = 3200. 

Figure 5: Dependence of the normalized number of deposited 
k-mers 𝑁𝑁(𝑙𝑙)/𝑁𝑁0 on the k-mers length 𝑙𝑙, for the system in the 

jamming state. The results are given for seed density 𝜌𝜌 = 0.49 
on the lattice sizes 𝐿𝐿 = 3200, for different 𝑘𝑘′ indicated in the 

legend. Here, 𝑁𝑁0 is an initial number of seeds at a given 
density 𝜌𝜌. 

Figure 5 shows the dependence of the normalized number 
of deposited k-mers 𝑁𝑁(𝑙𝑙)/𝑁𝑁0 on their length 𝑙𝑙. It can be 
seen that the results for the growth limit 𝑘𝑘′ ≥ 10 are 
almost identical (the results are slightly different for 𝑘𝑘′ ≥
5 which is not noticeable in this graph).  

Figure 6: Dependence of the jamming coverage 𝜃𝜃𝐽𝐽 on the 
initial seed density 𝜌𝜌 for growing k-mers. 

They differ only in the maximum length reached at 𝑘𝑘′ =
40. For larger k-mers, ratio 𝑁𝑁(𝑙𝑙)/𝑁𝑁0 → 0, this means that
long k-mers are very rare. In all cases dimers (𝑘𝑘 = 2) are 
the most numerous k-mers. 
The jamming coverage 𝜃𝜃𝐽𝐽 (for the cases where percolation 
is reached) for different growth limits and seed densities 
is shown in Figure 6. For lower values of the growth limit, 
𝜃𝜃𝐽𝐽 has lower values. As the growth limit increases, the 
values of the jamming coverage for a particular seed 
density increase and become identical for 𝑘𝑘′ ≥ 10.  

CONCLUSION 

Dependence of the percolation threshold and the jamming 
coverage on the limit of k-mers growth using numerical 
simulations was investigated. Simulations were performd 
for initial states with various initial seed densities and for 
different growth limits. 
Depending on the growth limit percolation was not 
reached for all seed densities. For the lowest value of the 
growth limit 𝑘𝑘′ = 2, the percolation is reached for 𝜌𝜌 ≥
0.3. When the growth limit increases, the seed density for 
which percolation appears decreases. For 𝑘𝑘′ ≥ 10 the 
percolation was achieved for all investigated densities. 
For the same seed densities, the values of the percolation 
threshold for 𝑘𝑘′ ≤ 5 have a slightly higher values than for 
𝑘𝑘′ ≥ 10. For all growth limits 𝑘𝑘′, the percolation 
threshold 𝜃𝜃𝑝𝑝∗ increases with seed density 𝜌𝜌, reaches a 
broad maximum, and then decreases. The results become 
identical for 𝑘𝑘′ ≥ 10.  
The jamming coverage 𝜃𝜃𝐽𝐽 also increases with 𝜌𝜌 for all the 
growth limits, and the values of 𝜃𝜃𝐽𝐽 become identical also 
for  𝑘𝑘′ ≥ 10. For lower values of the growth limit, 𝜃𝜃𝐽𝐽 has 
lower values. 

The k-mers can reach a given lenght in cases where 
growth limit is less than 20. For 𝑘𝑘′ ≥ 20 there are critical 
maximum lengths of k-mer growth regardless of the 
growth limit 𝑘𝑘′, depending only on the initial density of 
seeds but the mean value of the maximum length is 
identical. 
These results suggest that there is a critical growth limit 
for k-mer growth, above which the percolation threshold 
and jamming coverage remain unchanged for all seed 
densities. There are also critical maximal lengths of k-mer 
growth regardless of the growth limit 𝑘𝑘′, depending only 
on the initial density of seeds.  
Although present, long k-mers, when significant growth 
is allowed, are very rare and do not influence the results. 
On the other hand, small k-mers have a significant role 
that can be further investigated by making a mixture of 
seeds with two or more different growth limits. It is also 
interesting to follow the changes in the percolation 
threshold if some point-like impurities are initially added 
to the lattice. 
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Summary/Sažetak 

Fizička i hemijska svojstva nanokristala u velikoj mjeri zavise od njihovog oblika, tako da je kontrola oblika postala veoma 

važna. Metoda rasta sjemena omogućava sjemenu da raste na unaprijed određen način. Ranije smo predložili model koji 

može da reprodukuje rast sjemena na triangularnoj rešetki tako da se formiraju različiti oblici. U ovom radu smo, međutim, 

uveli ograničenje na rast sjemena do određene dužine. Ovaj metod se može koristiti kada je rast svih sjemena ograničen na 

istu dužinu, ili za smjese sjemena s različitim konačnim dužinama. Glavni cilj je ispitati kako ograničenje rasta utječe na 

perkolacioni prag i gustinu zagušenja, te ispitati da li dugački objekti značajno utječu na perkolacioni prag. Koristili smo 

narastajuće objekte u obliku igle ili k-mere koji su formirani samoizbjegavajućim slučajnim šetnjama koje popunjavaju 

čvorove triangularne rešetke. Objekti mogu da rastu dok ne dostignu granicu rasta k' koja je definisana kao maksimalni broj 

čvorova rešetke koji pripadaju jednom objektu. Za 𝑘𝑘′ ≥ 10 perkolacija je postignuta za sve ispitivane početne gustine 

sjemena. Dobili smo da za granice rasta 𝑘𝑘′ ≥ 10 vrijednosti perkolacionog praga i gustine zagušenja se preklapaju za sve 

vrijednosti gustine sjemena. Iznad ovih vrijednosti perkolacioni prag i gustina zagušenja ostaju uvijek isti bez obzira na 

granicu rasta. Rezultati pokazuju da kada je dozvoljen znatan rast, dugački objekti su veoma rijetki i ne utječu na rezultate.
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